为了精确地估计轮胎抓地状态,该文针对影响汽车行驶稳定性和安全性的轮胎和地面之间的相互作用模型进行了深入研究。采用轮胎刷子模型,同时考虑纵向滑移和侧向滑移情况,提出了改进的复合滑移轮胎刷子模型。利用抓地力和最大滚动摩擦系数确定轮胎抓地状态。通过定义复合滑移系数建立了一个关于抓地状态的一元三次方程式,讨论模型中参数对抓地状态的影响,为了提高模型适应性,同时考虑了速度与最大滚动摩擦系数的变化关系。选用225/60R18轮胎的某车型进行3次重复双移线试验,结果显示:在转向时间段内(1.8~2,3.2~3.4,4.4~4.6 s)抓地状态分别为0.54、0.79和0.39,与估计值极限误差分别为4%、5.4%和5.2%,而在直线行驶时测量值与估计值误差小于2%,说明此解析模型可为预测轮胎滑移状态提供一种新的方法。该文对汽车操纵稳定性的研究具有一定的指导意义。
In order to obtain accurate estimation of the tire gripping state, a model on the interaction between the tire and the ground playing a key role in the driving stability and the security of vehicles was studied in this paper. Adopting the Brush Model of tire and considering the contact differences between the longitudinal slip and the lateral slip considered, an improved Brush Model of tire based on the compound slip theory was proposed for modeling the tire gripping state. The Brush Model is an important method to predict the force between the tire and the ground, and in this simplified tire model, the contact state between the tire and the road can be divided into the adhesion area and the slip area. The forces in the adhesion area come from the static friction between the tread of rigid carcass and the road, and the forces in the slip area come from the sliding friction between the tread and the road. The innovation of this article is to distinguish the friction types between the ad