登录

双语推荐:莱布尼茨公式

牛顿-莱布尼茨公式是微积分的核心内容,它为定积分的计算提供了一个有效的方法 .但由于定理的条件要求较高,这对定积分的计算产生一定约束.首先对牛顿-莱布尼茨公式作了一些推广工作,然后建立了广义积分的牛顿-莱布尼茨公式,其结果在积分理论及计算上都有一定意义,同时对高等数学的教学也有一定参考意义.
New ton‐Leibniz formula ,w hich provides an efficient method for the computation of definite inte‐grals ,is the very kernel theorem .However ,the computation of definite integrals is subjected to some re‐striction ,since the theorem can only be used under a better assumption .In this paper ,New ton‐Leibniz formula has been generalized and its form for improper integral been presented .Our results are not only useful for integral theory and computation ,but also for the class teaching of higher mathematics .

[ 可能符合您检索需要的词汇 ]

运用牛顿-莱布尼茨公式和无界函数的反常积分的定义证明无界函数的反常积分的计算定理,运用这个定理计算无界函数的反常积分简单快捷,通过举例说明这个定理的应用,并指出多种大学数学参考书中存在的一个共同错误.
This paper proves a theorem for evaluating improper integrals with infinite integrands .Several examples show that it is simple and easy to evaluate improper integrals by using this theorem .This paper also points out a common mistake existing in many college textbooks .

[ 可能符合您检索需要的词汇 ]